Hierarchical Document Clustering via Optimal Centroid Selection using Adaptive Pillar K-means – Gaussian Firefly Algorithm
نویسندگان
چکیده
منابع مشابه
Web Document Clustering Approaches Using K-Means Algorithm
The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure. In data mining K-means clustering algorithm is one of the efficient unsupervised learning algorithms to solve the well-known clustering problems. The disadvantage in k-means algorithm is that, the accuracy and efficiency is varied with the choice of initial cl...
متن کاملDeterministic Initialization of the K-Means Algorithm Using Hierarchical Clustering
K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its gradient descent nature, this algorithm is highly sensitive to the initial placement of the cluster centers. Numerous initialization methods have been proposed to address this problem. Many of these methods, however, have superlinear complexity in the number of data points, making them imprac...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملDistributed Document Clustering Using K-Means
Document clustering, one of the traditional data mining techniques, is an unsupervised learning paradigm where clustering methods try to identify inherent grouping of the text documents.The importance of document clustering emerges from the massive volumes of textual documents created. Also, with more and more development of information technology, data set in many domains is reaching beyond pe...
متن کاملA Comprehensive Survey on Centroid Selection Strategies for Distributed K-means Clustering Algorithm
Extremely large data sets often known as ‘Big Data’ are analyzed for interesting patterns, trends, and associations, especially those relating to human behavior and interactions. Extraction of meaningful and useful information needs to be done in parallel using advanced clustering algorithms. In this paper, effort has been made to tweak in changes to the existing K-means algorithm so as to work...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Intelligent Computing
سال: 2019
ISSN: 0976-9005,0976-9013
DOI: 10.6025/jic/2019/10/1/1-14